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Linear regression

 Linear regression is a simple approach to supervised learning. It assumes that 

the dependence of 𝑌 on 𝑋1, 𝑋2, …𝑋𝑝 is linear.

 True regression functions are never linear!

 Although it may seem overly simplistic, linear regression is extremely useful 

both conceptually and practically.
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Linear regression for the advertising data

 Consider the advertising data, questions we might ask:

 Is there a relationship between advertising budget and sales?

 How strong is the relationship between advertising budget and sales?

 Which media contribute to sales?

 How accurately can we predict future sales?

 Is the relationship linear?

 Is there synergy among 

the advertising media?
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Simple linear regression using a single predictor 𝑋

 We assume a model
𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖,

where 𝛽0 and 𝛽1 are two unknown constants that represent the intercept and slope, also known 

as coefficients or parameters, and 𝜖 is the error term which is assumed to i.i.d. that follows 

normal distribution. (LINE)

𝑌|𝑋~𝑁 𝛽0 + 𝛽1𝑋, 𝜎
2 , 𝜎2 = 𝑉𝑎𝑟 𝜖

 Given some estimates 𝛽0 and 𝛽1 for the model coefficients, we predict future 

sales using
ො𝑦 = መ𝛽0 + መ𝛽1𝑥,

where ො𝑦 indicates a prediction of 𝑌 on the basis of 𝑋 = 𝑥. The hat symbol denotes an 

estimated value
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https://stats.stackexchange.com/questions/246047/independent-variable-random-variable
https://online.stat.psu.edu/stat415/lesson/7/7.4


Estimation of the parameters by least squares

 Let ො𝑦𝑖 = መ𝛽0 + መ𝛽1𝑥𝑖 be the prediction for 𝑌 based on the 𝑖th value of 𝑋. Then 

𝑒𝑖 = 𝑦𝑖 − ො𝑦𝑖 represents the 𝑖th residual

 We define the residual sum of squares (RSS) as

𝑅𝑆𝑆 = 𝑒1
2 + 𝑒2

2 +⋯+ 𝑒𝑛
2

= (𝑦1 − መ𝛽0 − መ𝛽1𝑥1)
2+(𝑦2 − መ𝛽0 − መ𝛽1𝑥2)

2+⋯+ (𝑦𝑛 − መ𝛽0 − መ𝛽1𝑥𝑛)
2

 The least squares approach (Maximum likelihood) chooses መ𝛽0 and መ𝛽1 to 

minimize the RSS. The minimizing values can be shown to be

መ𝛽1 =
σ𝑖=1
𝑛 (𝑥𝑖− ҧ𝑥)(𝑦𝑖−ത𝑦)

σ𝑖=1
𝑛 (𝑥𝑖− ҧ𝑥)2

, መ𝛽0 = ത𝑦 − መ𝛽1 ҧ𝑥

 where ത𝑦 =
1

𝑛
σ𝑖=1
𝑛 𝑦𝑖 and ҧ𝑥 =

1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 are the sample mean

 Scale does not affect the estimation of ො𝑦

5

https://stats.stackexchange.com/questions/143705/maximum-likelihood-method-vs-least-squares-method
https://online.stat.psu.edu/stat415/lesson/7/7.4
https://stats.stackexchange.com/questions/29781/when-conducting-multiple-regression-when-should-you-center-your-predictor-varia


Example: Advertising data

 The least squares fit for the regression of sales onto TV. In this case a linear fit 

captures the essence of the relationship, although it is deficient in some part of 

the plot
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(1) Assessing the Accuracy of the Coefficient Estimates

 𝑌 = 2 + 3𝑋 + 𝜖
 Red line indicates the population regression line 

 For example, if we want to estimate the population mean

 ො𝜇 =
1

𝑛
σ𝑥𝑖

 𝑉𝑎𝑟 ො𝜇 = SE( ො𝜇)2 =
𝜎2

𝑛

 𝜎 is standard deviation of 𝑥𝑖’s
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Assessing the Accuracy of the Coefficient Estimates

 The standard error of an estimator reflects how it varies under repeated 

sampling. We have

𝑆𝐸( መ𝛽1)
2 =

𝜎2

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

, 𝑆𝐸( መ𝛽0)
2 = 𝜎2

1

𝑛
+

ҧ𝑥2

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

 where 𝜎2 = 𝑉𝑎𝑟 𝜖 , ො𝜎2 =
𝑅𝑆𝑆

𝑛−2

 These standard errors can be used to compute confidence intervals. A 95% 

confidence interval is defined as a range of values such that with 95% 

probability, the range will contain the true unknown value of the parameter. It 

has the form
መ𝛽1 ± 2 × 𝑆𝐸( መ𝛽1)
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https://online.stat.psu.edu/stat415/lesson/7/7.5
https://stats.stackexchange.com/questions/266885/how-can-i-get-the-variance-sigma2-for-linear-regression-under-homoscadastic


Confidence intervals — continued

 That is, there is approximately a 95% chance that the interval
[ መ𝛽1 − 2 · 𝑆𝐸 መ𝛽1 , መ𝛽1 + 2 · 𝑆𝐸 መ𝛽1 ]

will contain the true value of 𝛽1 (under a scenario where we got repeated     

samples like the present sample)

 For the advertising data, the 95% confidence interval for 𝛽1 is [0.042, 0.053]
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Hypothesis testing

 Standard errors can also be used to perform hypothesis tests on the coefficients 

 The most common hypothesis test involves testing the null hypothesis of

𝐻0 : There is no relationship between 𝑋 and 𝑌

versus the alternative hypothesis

𝐻𝑎 : There is some relationship between 𝑋 and 𝑌

 Mathematically, this corresponds to testing

𝐻0 : 𝛽1 = 0 versus  𝐻𝑎 : 𝛽1 ≠ 0

since if 𝛽1 = 0 then the model reduces to Y = 𝛽0 + ϵ, and 𝑋 is not associated 

with 𝑌
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Hypothesis testing — continued

 To test the null hypothesis, we compute a 

t-statistic, given by

𝑡 =
መ𝛽1 − 0

𝑆𝐸 መ𝛽1

 This will have a 𝑡-distribution with 𝑛 −
2 degrees of freedom, assuming 𝛽1 = 0

 Using statistical software, it is easy to 

compute the probability of observing any 

value equal to |𝑡| or larger. We call this 

probability the 𝑝-value

11 𝑝-value

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/what-is-a-z-score-what-is-a-p-value.htm

https://stats.stackexchange.com/questions/60074/wald-test-for-logistic-regression
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/what-is-a-z-score-what-is-a-p-value.htm


(2) Assessing the Overall Accuracy of the Model

 We compute the Residual Standard Error (RSE) (smaller is better)

𝑅𝑆𝐸 =
1

𝑛 − 2
𝑅𝑆𝑆 =

1

𝑛 − 2
෍

𝑖=1

𝑛

(𝑦𝑖 − ො𝑦𝑖)
2 = ෝσ

where the residual sum-of-squares is 𝑅𝑆𝑆 = σ𝑖=1
𝑛 (𝑦𝑖 − ො𝑦𝑖)

2

 R-squared or fraction of variance explained is (larger is better)

𝑅2 =
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆

where 𝑇𝑆𝑆 = σ𝑖=1
𝑛 (𝑦𝑖 − ത𝑦)2 = σ𝑖=1

𝑛 (𝑦𝑖 − ො𝑦𝑖)
2 + σ𝑖=1

𝑛 ( ො𝑦𝑖 − ത𝑦)2 is the total sum of squares

 It can be shown that in this simple linear regression setting that 𝑅2 = 𝑟2, where 𝑟 is the 

correlation between 𝑋 and 𝑌:

𝑟 = 𝐶𝑜𝑟 𝑋, 𝑌 =
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2 σ𝑖=1

𝑛 (𝑦𝑖 − ҧ𝑥)2
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Advertising data results
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𝐹 =
(𝑇𝑆𝑆 − 𝑅𝑆𝑆)/𝑝

𝑅𝑆𝑆/(𝑛 − 𝑝 − 1)
~𝐹𝑝,𝑛−𝑝−1



Multiple Linear Regression

 Instead of fitting three simple linear regression model for each predictor 

 Here our model is 
𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝 + 𝜖

We interpret 𝛽𝑗 as the average effect on 𝑌 of a one unit increase in 𝑋𝑗, holding all 

other predictors fixed. In the advertising example, the model becomes

𝑆𝑎𝑙𝑒𝑠 = 𝛽0 + 𝛽1 × 𝑇𝑉 + 𝛽2 × 𝑟𝑎𝑑𝑖𝑜 + 𝛽3 × 𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟 + 𝜖
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Interpreting regression coefficients

 The ideal scenario is when the predictors are uncorrelated - a balanced design:

 Each coefficient can be estimated and tested separately

 Interpretations such as “a unit change in 𝑋𝑗 is associated with a 𝛽𝑗 change in 𝑌 , while all 

the other variables stay fixed”, are possible

 Correlations amongst predictors cause problems:

 The variance of all coefficients tends to increase, sometimes dramatically

 Interpretations become hazardous - when 𝑋𝑗 changes, everything else changes.

 Claims of causality should be avoided for observational data
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Estimation and Prediction for Multiple Regression

 Given estimates መ𝛽0, መ𝛽1, … መ𝛽𝑝, we can make predictions using the formula

ො𝑦 = መ𝛽0 + መ𝛽1𝑥1 + መ𝛽2𝑥2 +⋯+ መ𝛽𝑝𝑥𝑝

 We estimate መ𝛽0, መ𝛽1, … መ𝛽𝑝 as the value that minimize the sum of squared 

residuals

𝑅𝑆𝑆 =෍

𝑖=1

𝑛

(𝑦𝑖 − ො𝑦𝑖)
2 =෍

𝑖=1

𝑛

(𝑦𝑖 − መ𝛽0 − መ𝛽1𝑥𝑖1 − መ𝛽2 𝑥𝑖2 −⋯− መ𝛽𝑝𝑥𝑖𝑝)
2

This is done using standard statistical software. The values መ𝛽0, መ𝛽1, … መ𝛽𝑝 that 

minimize RSS are the multiple least squares regression coefficient estimates.
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Results for advertising data
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Results for advertising data
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Correlation matrix



Some important questions

1. Is at least one of the predictors 𝑋1, 𝑋2, …𝑋𝑝 useful in predicting the response?

2. Do all the predictors help to explain 𝑌, or is only a subset of the predictors 

useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should we predict, and 

how accurate is our prediction?
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Is at least one predictor useful?

 For the first question, we can use the F-statistic

𝐻0 : 𝛽1 = 𝛽1 = ⋯ = 𝛽𝑝 = 0 versus  𝐻𝑎 : at least one 𝛽𝑗 ≠ 0

𝐹 =
(𝑇𝑆𝑆 − 𝑅𝑆𝑆)/𝑝

𝑅𝑆𝑆/(𝑛 − 𝑝 − 1)
~𝐹𝑝,𝑛−𝑝−1

 Note if linear model assumption is hold, 𝐸
RSS

n−p−1
= 𝜎2 and if 𝐻0 hold, 𝐸ሼ

ሽ

(𝑇𝑆𝑆 −

𝑅𝑆𝑆)/𝑝 = 𝜎2

 To examine a particular set of 𝑞 variables, we use 𝐹 =
(𝑅𝑆𝑆0−𝑅𝑆𝑆)/𝑞

𝑅𝑆𝑆/(𝑛−𝑝−1)
(Compare with 

individual 𝑝-value)
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Deciding on the important variables

 The most direct approach is called all subsets or best subsets regression: we 

compute the least squares fit for all possible subsets and then choose between 

them based on some criterion that balances training error with model size.

 However we often can’t examine all possible models, since they are 2𝑝 of them; 

for example when 𝑝 = 40 there are over a billion models!

 Instead we need an automated approach that searches through a subset of them. 

We discuss three commonly use approaches next.
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Forward selection

1. Begin with the null model — a model that contains an intercept but no 

predictors.

2. Fit 𝑝 simple linear regressions and add to the null model the variable that 

results in the lowest RSS.

3. Add to that model the variable that results in the lowest RSS amongst all 

two-variable models.

4. Continue until some stopping rule is satisfied, for example when all 

remaining variables have a 𝑝-value above some threshold.
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Backward selection

1. Start with all variables in the model.

2. Remove the variable with the largest 𝑝-value — that is, the variable that is 

the least statistically significant.

3. The new (𝑝 − 1) −variable model is fit, and the variable with the largest 

𝑝 −value is removed.

4. Continue until a stopping rule is reached. For instance, we may stop when all 

remaining variables have a significant 𝑝-value defined by some significance 

threshold.
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Mixed selection

1. Begin with the null model, and as with forward selection, we add the variable 

that provides the best fit.

2. If at any point the 𝑝-value for one of the variables in the model rises above a 

certain threshold, then we remove that variable from the model.

3. Continue to perform these forward and backward steps until all variables in 

the model have a sufficiently low 𝑝-value, and all variables outside the model 

would have a large 𝑝-value if added to the model.
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After the selection procedure

 Mixed selection can remedy the following situations.

 Backward selection cannot be used if 𝑝 > 𝑛, while forward selection can always be used

 Forward selection is a greedy approach, and might include variables early that later 

become redundant

 Later we discuss more systematic criteria for choosing an “optimal” member in 

the path of models produced by forward stepwise selection.

 These include Mallow’s 𝐶𝑝, Akaike information criterion (AIC), Bayesian 

information criterion (BIC), adjusted 𝑅2 and Cross-validation (CV).

𝑅𝐴𝑑𝑗
2 = 1 −

𝑅𝑆𝑆
𝑛 − 𝑝 − 1

𝑇𝑆𝑆
𝑛 − 1

= 1 − (1 − 𝑅2)(
𝑛 − 1

𝑛 − 𝑝 − 1
)
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Model fit and prediction

 We compute the Residual Standard Error

𝑅𝑆𝐸 =
1

𝑛 − 𝑝 − 1
𝑅𝑆𝑆 =

1

𝑛 − 𝑝 − 1
෍

𝑖=1

𝑛

(𝑦𝑖 − ො𝑦𝑖)
2 = ෝσ

 Note that Even if we knew 𝑓(𝑋)—that is, even if we knew the true values for 

𝛽0, 𝛽1, … , 𝛽𝑝—the response value cannot be predicted perfectly because of the 

random error 𝜖 (irreducible error). How much will 𝑌 vary from ෠𝑌 ? We use 

prediction intervals to answer this question. 
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Confidence interval versus prediction interval

 Prediction intervals are always wider than confidence intervals, because they 

incorporate both the error in the estimate for 𝑓(𝑋) (the reducible error) and the 

uncertainty as to how much an individual point will differ from the population 

regression plane (the irreducible error).

𝐶. 𝐼. = ො𝑦𝑖 ± 𝑡 ൗ𝛼 2
ෝσ (

1

𝑛
+

(𝑥𝑖 − ҧ𝑥)2

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

)

𝑃. 𝐼. = ො𝑦𝑖 ± 𝑡 ൗ𝛼 2
ෝσ (1 +

1

𝑛
+

(𝑥𝑖 − ҧ𝑥)2

σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

)
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Bootstrap for confidence interval

 A graphical illustration of the 

bootstrap approach on a small sample 

containing 𝑛 = 3 observations. Each 

bootstrap data set contains 𝑛
observations, sampled with 

replacement from the original data set. 

Each bootstrap data set is used to 

obtain an estimate of 𝛼.
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Bootstrap for confidence interval

1. Generate 𝑛 “bootstrap sample” 

data points 𝑥𝑖
∗, 𝑦𝑖

∗

2. Fit linear regression using 𝑥𝑖
∗,

𝑦𝑖
∗

3. Evaluate the regression line on 

fix x-grid

4. Repeat step 1-3 for 𝐵 times 

and collect the values in step 3.

5. For each point in the x-grid, 

calculate the confidence 

interval using collected value 
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Other Considerations in the Regression Model

 Qualitative Predictors

 Some predictors are not quantitative but are qualitative, taking a discrete set of values

 These are also called categorical predictors or factor variables

 See for example the scatterplot matrix of the credit card data in the next slide.

 In addition to the 7 quantitative variables shown, there are four qualitative variables:  own 

(house ownership), student (student status), status (marital status), and region (East, West 

or South).
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Qualitative Predictors — continued

 Example: investigate differences in credit card balance between a person who 

has a house or not, ignoring the other variables. We create a new variable

𝑥𝑖 = ቊ
1 if 𝑖th person owns a house
0 if 𝑖th person does noy own a house

 Resulting model:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝜖𝑖 = ቊ
𝛽0 + 𝛽1 + 𝜖𝑖 if 𝑖th person owns a house
𝛽0 + 𝜖𝑖 if 𝑖th person does noy own a house

33



Qualitative predictors with more than two levels

 With more than two levels, we create additional dummy variables. For example, 

for the region variable we create two dummy variables. The first could be

𝑥𝑖1 = ቊ
1 if 𝑖th person is from the South
0 if 𝑖th person is not from the South

and the second could be

𝑥𝑖2 = ቊ
1 if 𝑖th person is from the West
0 if 𝑖th person is not from the West

 Then both of these variables can be used in the regression equation, in order to 

obtain the model

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝜖𝑖 = ൞

𝛽0 + 𝛽1 + 𝜖𝑖 if 𝑖th person is from the South
𝛽0 + 𝛽2 + 𝜖𝑖 if 𝑖th person is from the West
𝛽0 + 𝜖𝑖 if 𝑖th person is from the East

34



Qualitative predictors with more than two levels

 There will always be one fewer dummy variable than the number of levels. The 

level with no dummy variable — East in this example — is known as the 

baseline.
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Extensions of the Linear Model

 Removing the additive assumption: interactions and nonlinearity

 Interactions:

 In our previous analysis of the Advertising data, we assumed that the effect on sales of 

increasing one advertising medium is independent of the amount spent on the other media

 For example, the linear model

𝑠𝑎𝑙𝑒𝑠 = 𝛽0 + 𝛽1 × 𝑇𝑉 + 𝛽2 × 𝑟𝑎𝑑𝑖𝑜 + 𝛽3 × 𝑛𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟

states that the average effect on sales of a one-unit increase in TV is always 𝛽1, regardless of 

the amount spent on radio.

 But suppose that spending money on radio advertising actually increases the 

effectiveness of TV advertising, so that the slope term for TV should increase 

as radio increases
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 In this situation, given a fixed budget

of $100,000, spending half on radio

and half on TV may increase sales

more than allocating the entire

amount to either TV or to radio

 In marketing, this is known as a

synergy effect, and in statistics it is

referred to as an interaction effect

 The positive residuals (those visible

above the surface), tend to lie along

the 45-degree line, where TV and

Radio budgets are split evenly. The

negative residuals, tend to lie away

from this line.
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Modelling interactions — Advertising data

 Model takes the form
𝑠𝑎𝑙𝑒𝑠 = 𝛽0 + 𝛽1 × 𝑇𝑉 + 𝛽2 × 𝑟𝑎𝑑𝑖𝑜 + 𝛽3 × 𝑟𝑎𝑑𝑖𝑜 × 𝑇𝑉 + 𝜖
= 𝛽0 + (𝛽1 + 𝛽3 × 𝑟𝑎𝑑𝑖𝑜) × 𝑇𝑉 + 𝛽2 × 𝑟𝑎𝑑𝑖𝑜 + 𝜖

 The results in this table suggests that interactions are important.

 The 𝑝-value for the interaction term 𝑟𝑎𝑑𝑖𝑜 × 𝑇𝑉 is extremely low, indicating that there is 

strong evidence for 𝐻𝑎: 𝛽3 ≠ 0.

 The 𝑅2 for the interaction model is 96.8%, compared to only 89.7% for the model that 

predicts sales using TV and radio without an interaction term.
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Modelling interactions — Advertising data

 This means that (96.8 − 89.7)/(100 − 89.7) = 69% of the variability in sales that 

remains after fitting the additive model has been explained by the interaction 

term

 The coefficient estimates in the table suggest that an increase in TV advertising of $1, 000 

is associated with increased sales of (𝛽1 + 𝛽3 × radio) × 1000 = 19 + 1.1 × radio units.

 An increase in radio advertising of $1, 000 will be associated with an increase in sales of 

(𝛽2 + 𝛽3 × TV) × 1000 = 29 + 1.1 × TV units.

 Sometimes it is the case that an interaction term has a very small 𝑝-value, but 

the associated main effects (in this case, TV and radio) do not.

 The hierarchy principle: If we include an interaction in a model, we should also 

include the main effects, even if the 𝑝-values associated with their coefficients 

are not significant. Otherwise the interpretation may change.
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Interactions between qualitative and quantitative variables

 Consider the Credit data set, and suppose that we wish to predict balance using 

income (quantitative) and student (qualitative).

 Without an interaction term, the model takes the form

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑖 ≈ 𝛽0 + 𝛽1 × 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 + ቊ
𝛽2 if 𝑖th person is a student
0 if 𝑖th person is not a student

= 𝛽1 × 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 + ቊ
𝛽0 + 𝛽2 if 𝑖th person is a student
𝛽0 if 𝑖th person is not a student

 With interactions, it takes the form

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑖 ≈ 𝛽0 + 𝛽1 × 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 + ቊ
𝛽2 + 𝛽3 × 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 if 𝑖th person is a student
0 if 𝑖th person is not a student

= ቊ
(𝛽0 + 𝛽2) + (𝛽1 + 𝛽3) × 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 if 𝑖th person is a student
𝛽0 + 𝛽1 × 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 if 𝑖th person is not a student
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Interactions between qualitative and quantitative variables
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Credit data; Left: no interaction between income and student.

Right: with an interaction term between income and student.



Non-linear effects of predictors

 Polynomial regression on Auto data
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Non-linear effects of predictors

 The figure suggests that
𝑚𝑝𝑔 = 𝛽0 + 𝛽1 × ℎ𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟 + 𝛽2 × ℎ𝑜𝑟𝑠𝑒𝑝𝑜𝑤𝑒𝑟2 + 𝜖

may provide a better fit.

 The 𝑅2 of the quadratic fit is 0.688, compared to 0.606 for the linear fit, and the 

𝑝-value for the quadratic term is highly significant.

 If including horsepower2 led to such a big improvement in the model, why not 

include horsepower3, horsepower4, or even horsepower5?
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Potential Problems

 When we fit a linear regression model to a particular data set, many problems 

may occur. Most common among these are the following:

1. Non-linearity of the response-predictor relationships

2. Correlation of error terms

3. Non-constant variance of error terms

4. Outliers

5. High-leverage points

6. Collinearity

In practice, identifying and overcoming these problems is as much an art as a 

science
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1. Non-linearity of the Data

 The linear regression model assumes that there is a straight-line relationship 

between the predictors and the response.

 If the true relationship is far from linear, then virtually all of the conclusions that we draw 

from the fit are suspect

 In addition, the prediction accuracy of the model can be significantly reduced

 Residual plots are a useful graphical tool for identifying non-linearity.

 Ideally, the residual plot will show no discernible pattern. The presence of a pattern may 

indicate a problem with some aspect of the linear model.

 The left panel of Figure 3.9 displays a residual plot from the linear regression of mpg onto 

horsepower on the Auto data set that was illustrated in Figure 3.8.
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 The red line is a smooth fit to the residuals, which is displayed in order to make it easier to 

identify any trends

 The residuals exhibit a clear U-shape, which provides a strong indication of non-linearity 

in the data

 In contrast, the right-hand panel of Figure 3.9 displays the residual plot that results from 

the model (3.36), which contains a quadratic term

 There appears to be little pattern in the residuals, suggesting that the quadratic term 

improves the fit to the data
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2. Correlation of Error Terms

 An important assumption of the linear regression model is that the error terms, 

𝜖1, 𝜖2, … , 𝜖𝑛, are uncorrelated. What does this mean?

 For instance, if the errors are uncorrelated, then the fact that 𝜖𝑖 is positive provides little or 

no information about the sign of 𝜖𝑖+1
 If in fact there is correlation among the error terms, then the estimated standard errors will 

tend to underestimate the true standard errors. As a result, confidence and prediction 

intervals will be narrower than they should be

 As an extreme example, suppose we accidentally doubled our data, leading to observations 

and error terms identical in pairs. If we ignored this, our standard error calculations would 

be as if we had a sample of size 2𝑛, when in fact we have only 𝑛 samples. Our estimated 

parameters would be the same for the 2𝑛 samples as for the 𝑛 samples, but the confidence 

intervals would be narrower by a factor of 2!
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2. Correlation of Error Terms

 In the top panel, we see the residuals 

from a linear regression fit to data 

generated with uncorrelated errors

 The residuals in the bottom panel 

shows a clear pattern in the 

residuals—adjacent residuals tend to 

take on similar values

 Finally, the center panel illustrates a 

more moderate case in which the 

residuals had a correlation of 0.5. 

There is still evidence of tracking, but 

the pattern is less clear
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Plots of residuals from simulated time series data sets generated

with differing levels of correlation 𝜌 between error terms for 

adjacent time point



3. Non-constant Variance of Error Terms

 It is often the case that the variances of the error terms are non-constant. For 

instance, the variances of the error terms may increase with the value of the 

response. One can identify non-constant variances in the errors, or 

heteroscedasticity, from the presence of a funnel shape in the residual plot.
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The right-hand panel displays the 

residual plot after transforming the 

response using log 𝑌 .



4. Outliers

 An outlier is a point for which 𝑦𝑖 is far from the value predicted by the model

 Outliers can arise for a variety of reasons, such as incorrect recording of an observation 

during data collection. The red point (observation 20) in the left-hand panel illustrates a 

typical outlier

 The red solid line is the least squares regression fit, while the blue dashed line is the least 

squares fit after removal of the outlier.
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4. Outliers

 It is typical for an outlier that does not have an unusual predictor value to have 

little effect on the least squares fit. However, even if an outlier does not have 

much effect on the least squares fit, it can cause other problems

 For instance, in this example, the RSE is 1.09 when the outlier is included in the regression, 

but it is only 0.77 when the outlier is removed

 Since the RSE (𝜎) is used to compute all confidence intervals and 𝑝-values, such a 

dramatic increase caused by a single data point can have implications for the interpretation 

of the fit
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5. High Leverage Points

 We just saw that outliers are observations for which the response 𝑦𝑖 is unusual 

given the predictor 𝑥𝑖
 In contrast, observations with high leverage have an unusual value for 𝑥𝑖
 In order to quantify an observation’s leverage, we compute the leverage statistic. A large 

value of this statistic indicates an observation with high leverage.
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5. High Leverage Points

 For a simple linear regression,

ℎ𝑖 =
1

𝑛
+

(𝑥𝑖 − ҧ𝑥)2

σ
𝑖′=1
𝑛 (𝑥𝑖′ − ҧ𝑥)2

 The leverage statistics is always between 1/𝑛 and 1, and the average leverage for all the 

observations is always equal to (𝑝 + 1)/𝑛

 So if a given observation has a leverage statistic that greatly exceeds (𝑝 + 1)/𝑛, then we 

may suspect that the corresponding point has high leverage
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6. Collinearity

 Collinearity refers to the situation in which two or more predictor variables are 

closely related to one another

 The concept of collinearity is illustrated below using the Credit data set

 In the left-hand panel, the two predictors limit and age appear to have no obvious 

relationship

 In contrast, in the right-hand panel, the predictors limit and rating are very highly 

correlated with each other, and we say that they are collinear
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6. Collinearity

 Figure below illustrates some of the difficulties that can result from collinearity

 The left-hand panel is a contour plot of the RSS associated with different possible 

coefficient estimates for the regression of balance on limit and age

 Each ellipse represents a set of coefficients that correspond to the same RSS, with ellipses 

nearest to the center taking on the lowest values of RSS

 The black dots and associated dashed lines represent the coefficient estimates that result in 

the smallest possible RSS—in other words, these are the least squares estimates
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6. Collinearity

 In contrast, the right-hand panel displays contour plots of the RSS associated 

with possible coefficient estimates for the regression of balance onto limit and 

rating, which we know to be highly collinear

 Now the contours run along a narrow valley; there is a broad range of values for the 

coefficient estimates that result in equal values for RSS

 Hence a small change in the data could cause the pair of coefficient values that yield the 

smallest RSS—that is, the least squares estimates—to move anywhere along this valley

 This results in a great deal of uncertainty in the coefficient estimates

 Table 3.11 compares the coefficient estimates obtained from two separate 

multiple regression models

 In the first regression, both age and limit are highly significant with very small 𝑝-values

 In the second, the collinearity between limit and rating has caused the standard error for the 

limit coefficient estimate to increase by a factor of 12 and the 𝑝-value to increase to 0.701
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6. Collinearity

 In other words, the importance of the limit variable has been masked due to the 

presence of collinearity. 

 To avoid such a situation, it is desirable to identify and address potential collinearity 

problems while fitting the model.
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 Instead of inspecting the correlation matrix, a better way to assess 

multicollinearity collinearity is to compute the variance inflation factor (VIF)

 The VIF for each variable can be computed using the formula

𝑉𝐼𝐹 መ𝛽𝑗 =
1

1 − 𝑅𝑋𝑗|𝑋−𝑗
2

where 𝑅𝑋𝑗|𝑋−𝑗
2 is the 𝑅2 from a regression of 𝑋𝑗 onto all of the other predictors

 In the Credit data, a regression of balance on age, rating, and limit indicates 

that the predictors have VIF values of 1.01, 160.67, and 160.59

 As we suspected, there is considerable collinearity in the data!

 When faced with the problem of collinearity

1. The first is to drop one of the problematic variables from the regression. This can usually 

be done without much compromise to the regression fit

2. The second solution is to combine the collinear variables together into a single predictor
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Comparison of Linear Regression with K-Nearest Neighbors

 The non-parametric methods do not explicitly assume a parametric form for 

𝑓(𝑋), and thereby provide an alternative and more flexible approach for 

performing regression

 Here we consider one of the simplest and best-known non-parametric methods, 𝐾-nearest 

neighbors regression (KNN regression)

 Given a value for 𝐾 and a prediction point 𝑥0, KNN regression first identifies the 𝐾
training observations that are closest to 𝑥0, represented by 𝑁0

 It then estimates 𝑓(𝑥0) using the average of all the training responses in 𝑁0 . In other words,

መ𝑓 𝑥0 =
1

𝐾
෍

𝑥𝑖∈𝑁0

𝑦𝑖
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 Figure below illustrates two KNN fits on a data set with 𝑝 = 2 predictors

 The fit with 𝐾 = 1 is shown in the left-hand panel, while the right-hand panel corresponds 

to 𝐾 = 9

 We see that when 𝐾 = 1, the KNN fit perfectly interpolates the training observations, and 

consequently takes the form of a step function

 When 𝐾 = 9, the KNN fit still is a step function, but averaging over nine observations 

results in much smaller regions of constant prediction, and consequently a smoother fit

 In general, the optimal value for K will depend on the bias-variance tradeoff
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Comparison of Linear Regression with K-Nearest Neighbors

 The black solid lines represent 𝑓(𝑋), while the blue curves correspond to the 

KNN fits using 𝐾 = 1 and 𝐾 = 9
 In this case, the 𝐾 = 1 predictions are far too variable, while the smoother 𝐾 = 9 fit is 

much closer to 𝑓(𝑋)

 However, since the true relationship is linear, it is hard for a non-parametric approach to 

compete with linear regression: a non-parametric approach incurs a cost in variance that is 

not offset by a reduction in bias
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 The blue dashed line in the left-hand panel of Figure represents the linear 

regression fit to the same data. It is almost perfect. The right-hand panel reveals 

that linear regression outperforms KNN for this data

 The green solid line, plotted as a function of 1/𝐾, represents the test set mean squared 

error (MSE) for KNN

 The KNN errors are well above the black dashed line, which is the test MSE for linear 

regression. When the value of K is large, then KNN performs only a little worse than least 

squares regression in terms of MSE

 It performs far worse when K is small
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 Figure right examines the relative performances of 

least squares regression and KNN under 

increasing levels of non-linearity in the 

relationship between 𝑋 and 𝑌. In the top row, the 

true relationship is nearly linear

 The second row illustrates a more substantial 

deviation from linearity. In this situation, KNN 

substantially outperforms linear regression for all 

values of 𝐾

 Note that as the extent of non-linearity increases, 

there is little change in the test set MSE for the 

non-parametric KNN method, but there is a large 

increase in the test set MSE of linear regression
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 Figure below considers the same strongly non-linear situation as in the second 

row of Figure 3.19, except that we have added additional noise predictors that are 

not associated with the response

 When 𝑝 = 1 or 𝑝 = 2, KNN outperforms linear regression. But for 𝑝 = 3 the results are 

mixed, and for 𝑝 ≥ 4 linear regression is superior to KNN

 In fact, the increase in dimension has only caused a small deterioration in the linear regression 

test set MSE, but it has caused more than a ten-fold increase in the MSE for KNN

 This decrease in performance as the dimension increases is a common problem for KNN, and 

results from the fact that in higher dimensions there is effectively a reduction in sample size
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Generalizations of the Linear Model

 In much of the rest of this course, we discuss methods that expand the scope of 

linear models and how they are fit:

 Classification problems: logistic regression, support vector machines, deep learning.

 Non-linearity: kernel smoothing, splines and generalized additive models; nearest neighbor 

methods;  deep learning.

 Interactions: Tree-based methods, bagging, random forests and boosting (these also capture 

non-linearities)

 Regularized fitting: Ridge regression and lasso
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Appendix
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Reference

 About the proof of linear regression 

 https://en.wikipedia.org/wiki/Proofs_involving_ordinary_least_squares

 https://en.wikipedia.org/wiki/Simple_linear_regression

 About the concept of linear regression 

 https://online.stat.psu.edu/stat501/lesson/3/3.3

 https://online.stat.psu.edu/stat415/lesson/8/8.1

 https://stats.stackexchange.com/questions/85560/shape-of-confidence-interval-for-

predicted-values-in-linear-regression
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The woes of (interpreting) regression coefficients

 “Data Analysis and Regression” Mosteller and Tukey 1977

 A regression coefficient 𝛽𝑗 estimates the expected change in 𝑌 per unit change in 𝑋𝑗, with 

all other predictors held fixed. But predictors usually change together!

 Example: 𝑌 total amount of change in your pocket; 𝑋1 =# of coins; 𝑋2 = # of pennies, 

nickels and dimes. By itself, regression coefficient of 𝑌 on 𝑋2 will be > 0. But how about 

with 𝑋1 in model?

 𝑌 = number of tackles by a football player in a season; 𝑊 and 𝐻 are his weight and height. 

Fitted regression model is 𝑌 = 𝑏0 + 0.50𝑊 − 0.10𝐻. How do we interpret መ𝛽2 < 0?
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Two quotes by famous Statisticians

 “Essentially, all models are wrong, but some are useful” - George Box

 “The only way to find out what will happen when a complex system is 

disturbed is to disturb the system, not merely to observe it passively” - Fred 

Mosteller and John Tukey, paraphrasing George Box
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